D. S. COOMBS, A. J. ELLIS, W. S. FYFE and A. M. TAYLOR

A1.5. Mixes with quartz in place of silica

Results for the pure calcium system (corresponding to anorthite + 8 quartz) are summarized in Table 8. The crystallization was carried out in closed vessels at water vapour pressure or density of 0.33.

Bar

unk

Ric

as

pp.

Proc

eon at 4 whi nun by

> Pi Ri

proc

,			Table 8			
T(°C)	400	385	375	363	340	330
Products	An	An	An.W	W.An	W(An)	W
	285	265	220			
8	E.W	E	E			

The results of a similar series of experiments with the sodium system and quartz are listed in Table 9.

Table 9								
T(°C)	335	303	279	267	265	260	160	115
Products	Ab,Q	Ab,Q	A,Ab,Q	A,Q	A,Q	A,Q	A,Q	A,Q

A1.6. Mixes with sodium carbonate and bicarbonate

A series of experiments was conducted with mixes of composition Na₂O, Al₂O₃, 18SiO₂ where the soda was added as bicarbonate or carbonate. The pH of these solutions is lower than that of mixes using sodium hydroxide. At 250°C the pH of molar NaHCO₃ is about 9·0 and of an equimolar solution of carbonate—bicarbonate, about 10·8 (Ellis and Fyfe, 1957). The results are summarized in Table 10.

Table 10						
Sodium compound	<i>T</i> ' (°C)	Products				
NaHCO ₃	255	M.A.C.Q				
NaHCO ₃	258	A.M.Q				
NaHCO3/Na2CO3	258	(A.).(M).Q				
NaHCO ₃	265	A.M.Q				
NaHCO3/Na2CO3	265	A.Ab.Q				
NaHCO ₃	262	M.A.C.Q				
NaHCO ₃	275	M.A.Q				
NaHCO ₃	280	Ab.Q				
NaHCO ₃ /Na ₂ CO ₃	280	Ab.Q				

A1.7. Experiments using minerals as starting materials

A1.7.1. Xonotlite. In a further attempt to reduce the activity of the starting materials the mineral xonotlite was used as a source of calcium and was mixed with quartz and active alumina. The composition used corresponded to calcium mordenite. Results are summarized in Table 11.

Table 11									
$T(^{\circ}\mathrm{C})$ $P(\mathrm{bars})$ Products	390	380	380	365	360	320	315	310	265
	5000	2000	s.w.v.p	2000	s.w.v.p	s.w.v.p	5000	2000	4000
	An.Q	W.An.Q	W,An.Q	W.An.Q	W.An.Q	E.W.Q	W.E.Q	W.E.Q	E.Q